
Description of dynamic behaviour of three phase asynchronous induction  
machines by means of space phasors 

1 Simplifying assumptions 
• Phase symmetric windings are assumed, as well as symmetry of the whole machine 

structure. 

• Only first harmonics (in space) of current coverage, field excitation curve and flux 
density distribution are taken into account. 

• Waveform of all signals is not restricted. 

• Resistances and reactances are considered as constant parameters. 

• Eddy currents in solid iron as well as iron losses and friction losses are neglected. 

• Skin effects are neglected. 

2 Systematic of formula symbols 
Capital letters root mean squares 
  instantaneous values dependent on time, not p.u. 
Underlined capital letters complex time phasors 
lower-case letters instantaneous p.u. values dependent on time 
underlined lower-case letters complex space phasors 
Used symbols: 
f frequency 
ω angular velocity 
t time 
τ normalized time (p.u.); 

time constant 
s slip 
p power; 

number of pole pairs 
m torque 
r ohmic resistance 
x reaktance 
u voltage 
i current 
ψ flux linkage 
γ rotational angle 

(stator against rotor) 
δ rotational angle 

 (SKS against stator) 
ϕ phase shift (in time) 
θ moment of inertia (not p.u.) 
σ magnetic leakage factor 
κ magnetic coupling coefficient 
β reciprocal of a time constant 

Used indices: 
a, b, c stator phase winding 
A, B, C rotor phase winding 
S stator 
R rotor 
N nominal 
(K) coordinate system, rotating with 

arbitrary angular velocity 
(S) coordinate system fixed to the 

stator (SKS) 
(R) coordinate system fixed to the 

rotor (RKS) 
α real part 
β imaginary part 
m mechanical 
el electrical 
L load 
v losses 
µ magnetizing 
h main 
σ leakage 
i induced 
x* conjugate complex 
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3 Usage of per unit values 
Used reference values are: 

• amplitude of stator’s nominal voltage (per phase) NU2 ⋅  for all voltages 

• amplitude of stator’s nominal current (per phase) NI2 ⋅  for all currents 

• flux linkage NNU2 Ω⋅

N 2=
 belonging to nominal voltage and nominal frequency fN for 

all flux linkages ( Nf⋅πΩ ) 

• impedance NN IU for all impedances 

• π21 -times the period interval at nominal frequency fN for time 
Therefore time is measured by an angle tN ⋅Ω=τ . 

• apparent power  for all powers NN IU3 ⋅⋅

• torque derived from nominal apparent power and synchronous angular velocity (at 
nominal frequency) for all torques. 

4 Representation of operation condition of a three phase asynchronous induc-
tion machine by means of complex space phasors 

Feeding a m-phase symmetrical winding with m alternating currents which are shifted in 
phase by T/m (T...period interval) generates a rotating current coverage with distinct 
sinusoidal first harmonic (in space). 
Changes in axial direction are neglected, therefore it is possible to describe this sine 
wave by means of a phasors in the complex plane. The origin is located at the ma-
chine’s axis of rotation. 
When describing the operational behaviour of the machine, three particular angular ve-
locities of the coordinate system are important: 

• ωK = 0 SKS coordinate system fixed to the stator 

• ωK = ωS DKS coordinate system fixed to the rotating magnetic field 

• ωK = ωm RKS coordinate system fixed to the rotor 
In a coordinate system fixed to the stator the three phase currents of the stator ia, ib, ic of 
a three phase winding are united in the stator’s current space phasors iS. 
The corresponding coordinate system is identified by an additional index in brackets: 
(S) ... fixed to the stator, (R) ... fixed to the rotor 

( )c
2

ba)S(S iaiai
3
2i ⋅+⋅+⋅=  ( 1 ) 

using 
2
3j

2
1ea 3

2j
+−==

π
 ( 2 ) 

This may also be read as a formal definition. 
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Solving this equation we obtain the phase currents (using i 0ii cba =++ ): 

( ))S(Sa iRei =  ( 3 ) 

( ))S(S
2

b iaRei ⋅=  ( 4 ) 

( ))S(Sc iaRei ⋅=  ( 5 ) 

Space phasors representing voltage and flux linkage are defined in the same way. 
Analogous to that the rotor phase currents are united in the coordinated system fixed to 
the rotor:  

( )C
2

BA)R(R iaiai
3
2i ⋅+⋅+⋅=  ( 6 ) 

Using a coordinate system rotating with arbitrary angular velocity the conversion ov a 
space phasors i into another coordinate system is shown: 

The coordinate system fixed to the stator has the angular velocity ωK = 0. 

The coordinate system fixed to the rotor has the angular velocity ωK = ωm. 

The angle of twist γ against the coordinate system fixed to the stator is: ( )τω=
τ
γ

md
d  

An arbitrary coordinate system has the angular velocity ωK. 

The angle of twist δ against the coordinate system fixed to the stator is: ( )τω=
τ
δ

Kd
d  

δ−⋅= j
)S()K( eii  ( )  γ−δ−⋅= j

)R()K( eii γ−⋅= j
)S()R( eii  

Since angular velocities in general are dependent on time, we have to obey product’s 
rule when differentiating with respect to time: 

δδδδ ⋅⋅ω+⋅
τ

=







τ
δ

⋅⋅+⋅
τ

=
τ

j
)K(K

j)K(j
)K(

j)K()S( eije
d
id

d
djeie

d
id

d
id
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5 Description of dynamic behaviour of three phase asynchronous induction 
machines by means of space phasors equations 

5.1 Voltage equations 
Starting with Maxwell’s 2nd law, using a consumer oriented reference system we obtain 
the voltage equation for one phase of the machine: 

t
BErot

∂
∂

−=  ⇒ aaS
a UIR

dt
dsdE −⋅=

Ψ
−=⋅∫

NU
1

⋅  ( 7 ) 

⇒  
τ

ψ
+⋅=

d
diru a

aSa  
3
2

⋅  ( 8 ) 

Analogous to that we can write down the voltage equations for mphases b and c: 

 
τ

ψ
+⋅=

d
diru b

bSb  a
3
2

⋅  ( 9 ) 

 
τ

ψ
+⋅=

d
diru c

cSc  2a
3
2

⋅  ( 10 ) 

Multiplying the equations by the indicated factors and summing up equations  
( 8 ) – ( 10 ) yields the stator’s voltage equation as space phasors representation: 

τ

ψ
+⋅=

d

d
iru )S(S

)S(SS)S(S  ( 11 ) 

Analogous the rotor’s voltage equation in the coordinate system fixed to the rotor is: 

τ

ψ
+⋅=

d

d
iru )R(R

)R(RR)R(R  ( 12 ) 

Transforming both voltage equations to a common coordinate system yields: 

)K(SK
)K(S

)K(SS)K(S j
d

d
iru ψ⋅ω+

τ

ψ
+⋅=  ( 13 ) 

( )
)K(RmK

)K(R
)K(RR)K(R j

d

d
iru ψ⋅ω−ω+

τ

ψ
+⋅=  ( 14 ) 

The practically important special cases for coordinate system fixed to the stator, the ro-
tor and the rotating magnetic field we may obtain by substituting the special values of 
angular velocity for ωK. 
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5.2 Flux linkage equations 
Superposition of the three fundamental field excitation waves generates a total magne-
tomotive force which generates the main magnetic flux: 

)K(R)K(S)K( iii +=µ  ( 15 ) 

µ⋅=ψ ixhh
 ( 16 ) 

Furthermore we assume that magnetic leakage fluxes only are dependent on stator re-
spectively rotor current: 

SSS
ix ⋅=ψ σσ

 ( 17 ) 

RRR
ix ⋅=ψ σσ

 ( 18 ) 

Using that we obtain the equations for total magnetic flux linkage: 

RhSSShS
ixix ⋅+⋅=ψ+ψ=ψ

σ
 ( 19 ) 

RRShRhR
ixix ⋅+⋅=ψ+ψ=ψ

σ
 ( 20 ) 

In this context the following equations apply: 

σ+= ShS xxx  ( 21 ) 

σ+= RhR xxx  ( 22 ) 

5.3 Electromagnetic torque; equation of rotational motion 
The torque generated by the machine can be derived from a power balance; the electric 
instantaneous power: 

( ) CCBBAAccbbaa IUIUIUIUIUIUtP ⋅+⋅+⋅+⋅+⋅+⋅=  ( 23 ) 

is divided by the nominal apparent power S NNN IU3 ⋅⋅= : 

( ) ( )CCBBAAccbbaa iuiuiuiuiuiu
3
2p ⋅+⋅+⋅+⋅+⋅+⋅=τ  ( 24 ) 

Using space phasors the instantaneous power may be written as: 

( ) ( )*
RR

*
SS iuiuRep ⋅+⋅=τ  ( 25 ) 

Instantaneous power may be split into three quantities: 

( ) ( ) ( ) ( )τ+τ+τ=τ µ mv pppp  ( 26 ) 

pv(τ) ... losses in stator and rotor  
pµ(τ) ... change of stored magnetic energy  
pm(τ) ... mechanic power 
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Using the voltage equations we obtain: 

( ) ( )

( )( ) ( )*
RRm

*
RR

*
SSK

*
R

R*
S

S*
RRS

*
SSS

ijReiijRe.........

i
d

d
i

d
d

ReiiriirRep

⋅ψ⋅ω−⋅ψ+⋅ψ⋅ω+














⋅

τ

ψ
+⋅

τ

ψ
+⋅⋅+⋅⋅=τ

 ( 27 ) 

Transforming the 3rd term we find: 

( )( ) ( )
( ) ( )

( ) 




 ⋅+⋅⋅+⋅⋅+⋅⋅

=⋅⋅+⋅+⋅⋅+⋅=Γ

Γ⋅ω=⋅ψ+⋅ψ⋅ω

**
SR

*
SRh

*
RRR

*
SSS

*
RRRSh

*
SRhSS

K
*
RR

*
SSK

iiiixiixiix......

iixixiixix

jReiijRe

⇒ Γ is a real number. ⇒ ( ) 0j KRe =Γ⋅ω  

Comparing both expressions of instantaneous power yields: 

( ) ( )
( )

( ) ( )*
RRmm

*
R

R*
S

S

*
RRS

*
SSSv

ijRep

i
d

d
i

d
d

Rep

iiriirRep

⋅ψ⋅ω−=τ














⋅

τ

ψ
+⋅

τ

ψ
=τ

⋅⋅+⋅⋅=τ

µ  ( 28 ) 

Mechanical power can be formulated by using stator values: 

( ) ( )( )*
RRRShmm iixixjRep ⋅⋅+⋅⋅ω−=τ   ( 29 ) 

Since *
RR i⋅i  is a real number, the follwing ( ) 0iixj *

RRRm =⋅⋅⋅ωRe  is valied and from there: 

( ) ( )*
RShmm iixjRep ⋅⋅⋅ω−=τ   ( 30 ) 

Since *
SS i⋅i  is a real number, we may add *

SS ix ⋅  to *
Rh ix ⋅ : 

( ) ( ) ( ) elm
*

SSm
*

SSmm miImijRep ⋅ω=ψ⋅⋅ω=ψ⋅⋅ω−=τ   ( 31 ) 

⇒ ( )*

SSel iIm ψ⋅=m   ( 32 ) 

Using reference values of torque and time we obtain the equation of rotational motion 
using per unit values: 

Lel
m MM

dt
d

−=
Ω

⋅Θ   ( 33 ) 

p
UU3M

S

NN
N,S Ω

⋅⋅
=                    

N,S

N,m
NMNm M

T
Ω

⋅Θ⋅Ω=⋅Ω=τ   ( 34 ) 

Lel
m

m mm
d

d
−=

τ
ω

⋅τ   ( 35 ) 

Anton Haumer Space Phasors page 6 of 7 



Description of dynamic behaviour of three phase asynchronous induction  
machines by means of space phasors 

5.4 The complete system of equations 
Using a coordinate system rotating with arbitrary angular velocity ωK the machine’s 
equations read as follows: 

( )

( )*

SSel

Lel
m

m

RRShR

RhSSS

RmK
R

RRR

SK
S

SSS

iImm

mm
d

d

ixix

ixix

j
d

d
iru

j
d

d
iru

ψ⋅=

−=
τ

ω
⋅τ

⋅+⋅=ψ

⋅+⋅=ψ

ψ⋅ω−ω+
τ

ψ
+⋅=

ψ⋅ω+
τ

ψ
+⋅=

 ( 36 ) 

To obtain currents from flux linkages, we have to invert equations of flux linkage: 

R
R

S
h

R

R
h

S
S

S

x
1

x
i

xx
1i

ψ⋅
⋅σ

+ψ⋅
⋅σ
κ

−=

ψ⋅
⋅σ
κ

−ψ⋅
⋅σ

+=

 ( 37 ) 

The total magnetic leakage factor is defined as follows: 

RS

2
h

xx
x11
⋅

−=κ−=σ  ( 38 ) 

6 The zero-sequence system 
Generally the  feeding system of alternating currents is no longer symmetric as as-
sumed in chapter 4, the sum of the currents is no longer = 0: 

( )cba0 iii
3
1i ++⋅=  ( 39 ) 

The zero-sequence system makes no contribution to the space phasor: 

0iaiai 0
2

00 =⋅+⋅+  ( 40 ) 

The zero-sequence system has no effect on the main field and causes only parasitic 
effects. Therefore it has to be calculated separately, it has to be added during back 
transformation: 

τ
ψ

+⋅=
d

diru 0
0S0  ( 41 ) 

( ))S(S0a iReii +=  ( 42 ) 
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